
World Transactions on Engineering and Technology Education © 2005 UICEE
Vol.4, No.2, 2005

 209

INTRODUCTION

The manual labour associated with grading student
assignments is a common problem for computer programming
courses. A number of automated grading systems have been
developed in order to address this issue, the majority of which
are restricted to marking programs with textual input and
output [1-6]. Another evaluates Excel spreadsheets and Access
database designs [7]. The automated evaluation of student
programs with a graphical user interface (GUI) is more
problematic because of the need to simulate user interaction
with GUI components, such as text fields and buttons.

Sun and Jones describe a first attempt to define an approach for
the automated grading of Java GUI programs [8]. In this
approach, a course instructor provides very specific
instructions to students about how their GUI must be designed.
The instructor also provides an XML-based test specification,
which defines test cases that include various actions to be
performed on specific GUI components. For example, a test
case might simulate entering a value in a text field, clicking a
button to get the student’s program to perform a calculation,
then comparing the value that appears in a result text field with
the expected result.

Sun and Jones’ approach places a number of restrictions on the
GUI programs written by students. Each student’s GUI must:

• Consist of only a single window (ie one JFrame instance);
• Include exactly the set of Java object types specified in the

assignment specification, in the same order and with the
same names as in the specification.

In this article, the authors introduce an automated grader for
Java GUI programs, called GUI_Grader, which relaxes these
restrictions and thus supports a wider variety of learning

opportunities for students. GUI_Grader allows students carry
out the following:

• Build applications with multiple windows, including both

JFrame and modal dialogue windows;
• Choose which types of Java objects they wish to use to

satisfy the needs specified by an assignment;
• Position these objects within their GUI layouts in an order

of their own choosing;
• Choose the appropriate labels for various GUI objects.

The simple calculator programs shown in Figures 1 and 2
illustrate some of these types of flexibility. Both programs
allow the user to enter two numeric values, select one of four
arithmetic operations and click a button to see a result
dialogue. In Figure 1, Tom used a group of radio buttons for
selecting the operation, while in Figure 2, Jack used a drop-
down combo box. The components are also arranged and
labelled differently within the two windows. GUI_Grader is
able to grade both programs based on a single program
specification and a single set of test data.

There are significant pedagogical issues behind the need
for such a grading tool. First, students tend to progress
rather rapidly beyond simple single-window applications,
even in first-year computer science courses. Text-only user
interfaces are common in introductory courses but tend to be
used less frequently in upper years. The authors’ approach
enables automated grading to be used further into the
curriculum.

Second, programming assignments often involve other
objectives besides writing and testing source code. Students
must also learn to select appropriate user interface components
and to design effective GUI layouts. GUI_Grader provides the
flexibility to support these learning goals.

Automated grading of student-designed GUI programs

Andrew McAllister & Man Yu Feng

University of New Brunswick
Fredericton, Canada

ABSTRACT: In this article, the authors introduce an automated grader for JavaTM programs, called GUI_Grader, which allows
students a degree of flexibility in graphical user interface (GUI) design. A previously published solution limits student programs to a
single window and forces instructors to make virtually all GUI design decisions. GUI_Grader allows students to build multi-window
Java applications, choose among alternative GUI components, and decide how to order, position and label the components.
Compared with other automated graders, this approach can be used further into the curriculum and supports important GUI design
learning objectives. The data-driven approach also helps to maintain consistency between program specifications and test plans.
Testing GUI_Grader on programming assignments from second-term courses confirms the usability of the approach.

 210

Figure 1: First calculator example.

Figure 2: Second calculator example.

This article is organised as follows: an overview of the
GUI_Grader architecture is provided, followed by a
presentation of how the assignment data are organised,
focusing on assignment specifications and test data,
respectively. This data organisation represents the key to how
GUI_Grader supports flexibility in GUI design. The last
section presents conclusions and future work.

GUI_GRADER OVERVIEW

GUI_Grader employs a data-driven architecture, as shown in
Figure 3. The assignment definition database includes two
types of data: assignment specifications and test cases. The
assignment maintenance tool provides a set of GUI forms that
allow instructors to create and edit an assignment specification,
and then create a set of test cases that will be used to grade the
programs completed for this assignment.

The assignment formatting tool converts raw assignment
specification data into a readable form for students. An
assignment specification defines:

• The windows that the assigned program should include;
• The types of GUI components that each window should

include (with some flexibility allowed, as illustrated by
Figures 1 and 2);

• The required functionality.

For example, the assignment specification for the calculator
application indicates that the program must include a single
JFrame window with two JTextField objects, a GUI object that
allows the user to choose one of four operations, and a JButton.
The application must also include a dialogue window to show
the results of calculations, as well as a few other dialogues for

error messages (eg if one of the text fields contains a non-
numeric value when the button is clicked). The functional
specification defines what should happen when the button is
clicked, including the precise conditions under which each of
the error message dialogues should appear.

Instructor

Student

Assignment
Maintenance

Tool

Assignment
Definition
Database

Assignment
Formatting

Tool

Assignment
Statement

(.html)
GUI_Grader

Assignment
Submission
Repository

Group
Grade
Report

Individual
Grade
Report

Java
Programs

Figure 3: GUI_Grader architecture.

Based on the assignment specification, each student writes and
debugs a solution, then submits it to the assignment submission
repository. GUI_Grader uses the assignment specification data
combined with the test cases to grade each submission in turn,
and provides grade information to both the students and
instructors.

Similar to Sun and Jones, GUI_Grader uses the NetBeans
Jemmy library to interact with Java programs written by
students [9]. The Jemmy methods simulate user interaction
with GUI objects, such as clicking buttons or menu items,
entering text into fields and verifying the behaviour of a
student’s software.

The existing automated graders mentioned in the first section
provide functionality similar to some parts of Figure 3. These
existing solutions allow students to submit solutions
electronically, execute each program in turn by applying a
series of test cases, and provide feedback about the resulting
grades.

The primary innovations of GUI_Grader can be found within
the assignment definition database, along with the way
GUI_Grader uses the data to feed a single set of test data to
programs with differing components. The authors highlight
these innovations by focusing on the database organisation.

 211

ASSIGNMENT SPECIFICATIONS

The assignment definition database defines the GUI
components that students must include in their calculator
programs. Table 1 shows the contents of the WINDOW
database table to define the four windows required for this
program. JFrame refers to a Java class included in the Swing
library, while the term Dialogue means that students are to use
Java’s JOptionPane class to create a modal dialogue. Students
are free to use whatever JOptionPane method they wish to
achieve the desired results.

Table 1: WINDOW.

Window Id Window Type
Calculator JFrame
Result Dialogue
InvalidInput Dialogue
InvalidDivisor Dialogue

Table 2 provides additional information about the types of
components that must appear in each window. The Component
Base Id field defines a name for each component. GUI_Grader
uses these names to access the components, so for each JFrame
window component defined in WINDOW_COMPONENT,
students must include a statement in their program that invokes
the setName method to associate the specified name with that
component. For example, the button in Figure 1 might be
coded as follows, consistent with row 4 of Table 2:

JButton submitButton = new JButton("OK");
submitButton.setName("Submit");

Table 2: WINDOW_COMPONENT.

Window Id Component Base Id Component
Type

Calculator Value1 Text input
Calculator Value2 Text input
Calculator Operation Single item

selection
Calculator Submit JButton
Result JOptionPane.JLabel JLabel
Result JOptionPane.JButton JButton
InvalidInput JOptionPane.JLabel JLabel
InvalidInput JOptionPane.JButton JButton
InvalidDivisor JOptionPane.JLabel JLabel
InvalidDivisor JOptionPane.JButton JButton

JOptionPane dialogues are created by method calls, so students
cannot access the window components directly to use setName.
Instead, GUI_Grader uses the default component names of the
form JOptionPane.<ComponentClassName>, as shown in the
last six rows of Table 2. This works fine for most JoptionPane
components (eg labels, icons, text fields), because there is
normally only one component of a given type per dialogue.
However, this is not true for buttons.

It is common, for instance, to have a dialogue with
buttons labelled YES, NO and CANCEL. For this reason,
GUI_Grader uses label text to identify JButton objects
on JOptionPane dialogue windows. The last three rows
of Table 3 specify the button labels for the Calculator
dialogues.

The COMPONENT_OPTION database table shown in Table 3
is also used to define the selection options for GUI components
such as JComboBox objects.

Table 3: COMPONENT_OPTION.

Window Id Component Base Id Option Id
Calculator Operation +
Calculator Operation -
Calculator Operation *
Calculator Operation /
Result JOptionPane.JButton OK
InvalidInput JOptionPane.JButton OK
InvalidDivisor JOptionPane.JButton OK

When designing the GUI for an assignment, instructors can
insist that specific Java classes are to be used, or they may give
students some flexibility in choosing which classes to use. The
Component Type column in Table 2 indicates that students are
to use specific Java classes (eg JLabel, JButton) for several
components. Terms like Text Input and Single Item Selection
give students a degree of choice, as indicated by Table 4. For
example, a student can use either a JTextField or a JTextArea
for a Text Input component.

Table 4: Flexible GUI component types.

Flexible Type Name Java Swing Classes
Single Item Selection JRadioButton group,

JComboBox
Multiple Item Selection JCheckBox, JList
Text Input JTextField, JTextArea,
Text Display JLabel, JTextField,

JTextArea
Event Selection JButton, JMenuItem

Tables 1, 2 and 3 define the minimum mandatory components
for each student program, which GUI_Grader expects to access
when executing test cases. Students are also expected to include
other GUI components, such as the labels for the text fields in
Figures 1 and 2. GUI_Grader does not automatically assess these
extra components, but instructors can choose to manually
assess such program attributes if they wish, along with others,
such as code formatting, comments and visual appeal.

The final part of the assignment specification is the functional
specification. This is a textual description of how the software
should perform, which includes references to the GUI
components defined in Tables 1, 2 and 3, as shown in Figure 4.

TEST CASES

A test plan consists of a set of numbered test cases (see Table
5), each of which includes one or more actions (see Table 6).
The test case Description field indicates the purpose of each
test case. These descriptions are used in the grading report
provided to students so they will understand which functions
their program was able to perform successfully and which
functions failed.

The instructor also assigns each test case a number of points.
This determines what the entire assignment will be marked out
of (the points total for all test cases), and the relative weight for
each test case.

 212

Table 6: TEST_ACTION.

Test Case # Action # Window Id Component Base Id Action Type Value
1 1 Calculator Value1 Input 1
1 2 Calculator Value2 Input 2
1 3 Calculator Operation Select +
1 4 Calculator Submit Click null
1 5 Result JOptionPane.JLabel Includes 3
1 6 Result JOptionPane.JButton Click OK
2 1 Calculator Value1 Input 4
2 2 Calculator Value2 Input 0
2 3 Calculator Operation Select /
2 4 Calculator Submit Click null
2 5 Result JOptionPane.JLabel Includes zero
2 6 Result JOptionPane.JButton Click OK

Write a Java program for a simple calculator. In the
Calculator window, the user enters a numeric value in each
of the Value1 and Value2 fields, selects one of four
operations (+, -, * or /) using the Operation component, then
clicks the Submit button. The Result window appears,
displaying in the JOptionPane.JLabel component a message
that includes the numeric result of the operation.
The InvalidInput window appears if the user clicks the Submit
button when either Value1 or Value2 are empty or contain a
non-numeric value, or when no operation is selected. Display
an appropriate message in the JLabel component.
The InvalidDivisor window appears if the user clicks the
Submit button when the / operation is selected, Value1
contains a valid numeric value and Value2 contains 0 (ie the
numeric value zero). Display an appropriate message in the
JLabel component that includes the substring zero.

Figure 4: Example of functional specification.

Table 5: TEST_CASE.

Test Case # Description Points

1 Addition operation 2
2 Division by zero 2

To execute a test case, GUI_Grader performs each action
in turn. For each action, GUI_Grader first uses Jemmy
library methods to verify that a GUI component with the
specified name (Component Base Id in Table 6) and an
appropriate type (as per Table 2) exists for the specified
window. If not, the test case fails and GUI_Grader moves on to
the next test case. If the component is found, an action of the
specified type is performed by invoking appropriate Jemmy
methods.

For example, test case 1 in Table 6 gets the calculator to add 1
plus 2, verifies that the label on the Result dialogue includes
the digit 3, and verifies that the Result dialogue includes the
appropriate button.

The six action types supported by GUI_Grader are listed in
Table 7. These simulate user interaction with the GUI
components. An Entry action simulates the user pressing any
keyboard key, using a list of keywords specific to GUI_Grader.
Examples include F1, Tab and Page Up. Contains and
Equals actions represent verification of expected test case
results.

Table 7: Action types.

Action Type Type of
Value Action Description

Input String Input to a Text Input
component

Entry Keyword A keyboard entry, eg pressing
the Esc key

Select Option Id Selecting an option of a single
or multiple item selection

Click null or
caption text

A mouse click on a button or
menu item

Contains String Verifying if the string is a
substring of the text in the
component

Equals String Verifying if the string equals
the text in the component

A grade report produced for a student program is simply a
summary of the results of each test case. Table 8 shows an
example report for a calculator program that was able to add 1
and 2 correctly, but failed to produce an appropriate message
dialogue for division by zero.

Table 8: Example grade report.

Test
Case # Description

Failed
in Step

Points Out of

1 Addition operation n/a 2 2
2 Division by zero 5 0 2

Total: 2 4

CONCLUSIONS AND FUTURE WORK

The soundness of this approach has been confirmed by testing
GUI_Grader with three multi-window GUI assignments
previously used in the second-term Java programming course.
This involved redefining the original assignment specifications
somewhat to conform to GUI_Grader's naming and flexible
type conventions, which turned out to be a straightforward
exercise. As compared with the traditional way of publishing
informal specifications for students, the extra work required to
define an assignment for GUI_Grader is minimal – less than an
hour per assignment for the examples that were tested.

Similarly, the first-year student volunteers who produced
sample programs for these assignments found that inserting
setName calls in their programs involved an insignificant

 213

amount of effort. These students reported no difficulties in
understanding and applying the concept of flexible GUI
component types. GUI_Grader was able to produce accurate
grade reports (compared with a manual evaluation) for all
programs.

By allowing multi-window programs and relaxing the
restrictions on students’ GUI designs, GUI_Grader offers
significant improvements over the approach employed by Sun
and Jones [8]. In addition, using a database to store assignment
specifications and test data provides another advantage. In
Sun and Jones, the software specification for a given
assignment is stored separately from the textual (XML)
specification of the test cases [8]. There is no automated
support to ensure consistency between the specification and the
test plan. Conversely, test data in the authors’ database is
linked directly to the GUI components defined in the
corresponding assignment specification. Referential integrity
ensures that the test data is consistent with the specification.
For example, the database disallows a test case that refers to
nonexistent GUI components. This type of consistency is
maintained regardless of whether the software specification
and test plan are developed by the same person or by different
people.

There are several opportunities for future work, the most
significant of which is to relax the restrictions on GUI design
even further. The more students are able to make their own
decisions, the more design experience they gain and the further
into the curriculum GUI_Grader can be used. The authors are
currently investigating how to allow students to decide what
windows their program will include and on which window
each required GUI component will reside.

The authors’ work has so far focused on handling flexible GUI
designs; other aspects of the environment are still relatively
simplistic. For instance, an evaluation of expected results can
be enhanced to handle a more complex analysis of textual
output fields, perhaps based on regular expressions or numeric
ranges. A more sophisticated scheme for assigning part

marks is also possible. For example, the TEST_ACTION table
might specify that a program that successfully completes a
given action partway through a test case should receive another
mark. This is less of an all or nothing approach.

Finally, it is anticipated that future practical experience using
GUI_Grader with various computer science courses will enable
educators to refine the approach to support courses at several
levels of the curriculum.

REFERENCES

1. Cheang, B., Kurnia, A., Lim, A. and Oon, W-C., On

automated grading of programming assignments in an
academic institution. Computers & Educ., 41, 121-131
(2003).

2. Jackson, D. and Usher, M., Grading student programs
using ASSYST. Proc. 28th SIGCSE Technical Symp. on
Computer Science Educ., San José, USA, 335-339 (1997).

3. Jones, E.L., Grading student programs - a software testing
approach. J. of Computing in Small Colleges, 16, 2,
185-192 (2001).

4. Morris, D.S., Automatic grading of student’s programming
assignments: an interactive process and suite of programs.
Proc. 33rd ASEE/IEEE Frontiers in Educ. Conf., Boulder,
USA, 112-116 (2003).

5. Reek, K.A., The TRY system – or how to avoid testing
student programs. ACM SIGCSE Bulletin, 21, 1, 112-116
(1989).

6. Reek, K.A., A software infrastructure to support
introductory computer science courses. Proc. 27th SIGCSE
Technical Symp. on Computer Science Educ.,
Philadelphia, USA, 125-129 (1996).

7. Hill, T.G., Excel grader and Access grader. SIGCSE
Bulletin, 36, 2, 101-105 (2004).

8. Sun, H. and Jones, E.L., Specification-driven automated
testing of GUI-based Java programs. Proc. 42nd ACM
Southeast Regional Conf., Huntsville, USA, 140-145
(2004).

9. NetBeans, Jemmy homepage, http://jemmy.netbeans.org

